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概要
代数多様体のエタール基本群とそれに付随する情報から，もとの代数多様体の情報を復元でき
るかという問題は遠アーベル幾何学における中心的なテーマである．付随する情報の一つとし
て，代数多様体に対応する複素解析空間の基本群（より正確にはその副有限完備化）がある．本
稿では，n次元複素射影空間内の本質的な超平面配置について，補空間の基本群とその副有限完
備化のコホモロジー次元は n以上であるという結果について紹介する．

1 導入
遠アーベル幾何学において，遠アーベル多様体に関する研究は中心的なテーマである．遠アーベル
多様体とは，代数多様体 X であって，そのエタール基本群 πét

1 (X)と付随する情報から X の情報が
「復元」できるような対象である．「復元」にはさまざまな定義が考えられるため，特に高次元におい
ては遠アーベル多様体に一般的な定義は存在しない．そこで，高次元遠アーベル多様体に一般的な定
義を与えることができるかということが遠アーベル幾何学における主要な問題となる．
付随する情報とは具体的に，体 k (⊆ C) 上の（幾何学的連結な）代数多様体 X に対する次の完
全列

1→ π̂1((XC)
an)→ πét

1 (X)→ Gk → 1

のことである．ここで，(XC)
an は X の Cへの基底変換の解析化である複素解析空間，π̂1((XC)

an)

は位相的基本群 π1((XC)
an)の副有限完備化，Gk は k の絶対ガロア群を表す．この完全列より，複

素解析空間の基本群を考えることは重要となる．そこで一種の「復元」として，π̂1((XC)
an)のコホ

モロジー次元から X の空間の次元を思い出すことができるかという問題が考えられる．本稿では，
複素解析空間 (XC)

an として超平面配置の補空間を考え，その基本群と副有限完備化のコホモロジー
次元に関して得られた結果を紹介する．
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2 準備
本節では，主定理に向けた準備を行う．主に超平面配置に関するさまざまな概念を紹介する．以下
で考える空間は全て有限次元であることに注意しておく．

定義 2.1. 体 k上の射影空間（resp. アフィン空間）に対し，余次元 1の部分射影空間 (resp. 部分ア
フィン空間)を超平面という．また，有限個の超平面からなる集合を超平面配置という．特に，射影
空間内の超平面配置を射影配置，アフィン空間内の超平面配置をアフィン配置ということもある．

アフィン空間が特にベクトル空間である場合，原点を通る超平面を線形超平面という．また，線
形超平面からなるアフィン配置を中心的配置という．以下では，「空間」とは体 k 上の射影空間，ア
フィン空間，ベクトル空間のいずれかとし，そこでの超平面配置とはそれぞれ射影配置，アフィン配
置，中心的配置を表すことにする．また，以下では体 k は省略する．

定義 2.2. 空間 X 内の超平面配置 Aに対して，

M(A) = X \
⋃

H∈A
H

を超平面配置 Aの補空間という．

超平面配置 Aに対して，交差情報からなる組み合わせ論的不変量 L(A)を導入する．超平面配置
Aや補空間M(A)に関する性質を，L(A)の半順序集合としての構造のみから記述できるかという
問題は，超平面配置の分野において中心的な話題である．

定義 2.3. 空間 X 内の超平面配置 Aに対して，

L(A) =

{ ⋂
H∈B

H ̸= ∅

∣∣∣∣∣ B ⊆ A
}

と定める．ただし，B = ∅のときは ⋂
H∈B H = X と考える．このとき，L(A)を通常の集合の包含

関係とは逆の順序で半順序集合とみなしたものを，超平面配置 Aの交差半順序集合という．

定義 2.4. Aを空間 X 内の超平面配置として，S ∈ L(A)とする．S の階数を

rk(S) = codimX(S)

と定める．また，Aの階数を

rk(A) = max {rk(T ) | T ∈ L(A)}

と定める．

次の本質的配置は，超平面配置の中でも特に（名前のとおり）本質的となる配置である．

定義 2.5. 射影配置 Aに対して， ⋂
H∈A

H = ∅



が成り立つとき，Aを本質的配置という．
また，n次元空間内のアフィン配置 Aに対して，

rk(A) = n

が成り立つとき，Aを本質的配置という．

射影配置と中心的配置を結びつけるコーン化・デコーン化という操作を紹介する．

定義 2.6. n+1次元ベクトル空間 V に対して，P (V )を付随する n次元射影空間，π : V \{0}↠ P (V )

を自然な射影とする．P (V )の超平面 H に対して，V 内の線形超平面

cH = π−1(H) ∪ {0}

を H のコーン化という．また，P (V )内の射影配置 A = {H1, . . . , Hr}に対して，V 内の中心的配
置 cA = {cH1, . . . , cHr} を Aのコーン化という．
逆に，V の線形超平面 H に対して，P (V )の超平面

dH = π(H \ {0})

を H のデコーン化という．また，V 内の中心的配置 A = {H1, . . . , Hr}に対して，P (V )内の射影
配置 dA = {dH1, . . . ,dHr} を Aのデコーン化という．

命題 2.7. V を n+ 1次元ベクトル空間として，A = {H1, . . . , Hr}を P (V )内の射影配置とする．
このとき，次が成り立つ．

(1) Aの超平面 H ∈ Aに対して，d(cH) = H である．
(2) Aの任意の部分配置 B ⊆ Aに対して，rk

(⋂
H∈B H

)
= rk

(⋂
H∈B cH

)である．
(3) Aが本質的であることとコーン化 cAが本質的であることは同値である．

同様の主張がデコーン化についても成り立つ．また，(3)により，射影配置およびアフィン配置の
双方に対して「本質的配置」という用語を用いることが妥当であることがわかる．
最後に，次節で主張を述べるために必要となる群のコホモロジー次元とK(π, 1)空間について紹介
する．一般に，群 Gに対して G加群という概念が定義され，G加群M に対して群のコホモロジー
Hn(G,M)を考えることができる．

定義 2.8. 群 Gに対して，

cd(G) = sup
{
n ∈ Z≥0

∣∣ あるG加群Mが存在して，Hn(G,M) ̸= 0
}

を Gのコホモロジー次元という．

以下で定義する副有限群についても（上とは異なる定義で）コホモロジー次元を定義することがで
きる (cf. [RZ10])．副有限群 Πに対しても同様に，コホモロジー次元を cd(Π)と表すことにする．

定義 2.9. コンパクト，ハウスドルフ，完全不連結である位相群を副有限群という．



定義 2.10. 群 Gに対して，副有限群

Ĝ = lim←−
N⊴G

(G:N)<∞

G/N

を Gの副有限完備化という．

K(π, 1) 空間とは，位相空間のコホモロジーと基本群のコホモロジーが結びつく対象である (cf.

[Bro82, CHAPTER III.1])．

定義 2.11. 位相空間 X が弧状連結であり，2次以上のすべてのホモトピー群が自明であるとき，X

をK(π, 1)空間という．

3 主定理
本節では，本質的な超平面配置の補空間に対して，基本群のコホモロジー次元に関する結果につい
て述べる．

命題 3.1 (cf. [FR00, p.11]). Aを n次元複素射影空間 P n(C)内の本質的な射影配置とし，その補
空間M(A)はK(π, 1)空間であるとする．このとき，

cd(π1(M(A))) = n

が成り立つ．

K(π, 1)性を仮定しない場合でも，基本群（とその副有限完備化）のコホモロジー次元は n以上で
あるという次の定理を示した．

主定理 3.2. Aを n次元複素射影空間 P n(C)内の本質的な射影配置とする．このとき，

cd(π1(M(A))) ≥ n

が成り立つ．さらに，副有限完備化 π̂1(M(A))のコホモロジー次元に対しても，

cd(π̂1(M(A))) ≥ n

が成り立つ．

4 主定理の証明の概略
本節では，主定理 3.2の証明の概略について述べる．超平面配置 A と X ∈ L(A) に対して，
AX = {H ∈ A | X ⊆ H}を Aの X での局所化という．

命題 4.1 ([Par93, Lemma1.1], [Yos24, Proposition 8.1] ). Aを n次元複素空間 Cn 内の本質的な
アフィン配置とする．X ∈ L(A)として，ι : M(A) ↪→M(AX)を自然な単射とする．このとき，任



意の k ≥ 1に対して，ι は分裂する全射群準同型

ι∗ : πk(M(A)) ↠ πk(M(AX))

を誘導する．

命題 4.1とデコーン化を帰納的に組み合わせることで次の命題を得る．

命題 4.2. Aを n次元複素射影空間 P n(C)内の本質的な射影配置とする．このとき，分裂する全射
群準同型

π1(M(A)) ↠ Zn

が存在する．

命題 4.2より，π1(M(A))は Zn と同型な部分群をもつので，

cd(π1(M(A))) ≥ cd(Zn) = n

となる．また，π̂1(M(A))は Ẑn ≃ Ẑn と同型な閉部分群をもつので，

cd(π̂1(M(A))) ≥ cd(Ẑn) = n

となる．
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